

GENERAL DESCRIPTION

The GS7227 is a high-speed, low-power double-pole/ double-throw (DPDT) analog switch that operates from a single 1.8V to 4.3V power supply.

GS7227 is designed for the switching of highspeed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os

The GS7227 has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s) with good signal integrity.

The GS7227 contains special circuitry on the D+/D\u0002pins which allows the device to withstand a VBUS short to D+ or D- when the USB devices are either powered off or powered on.

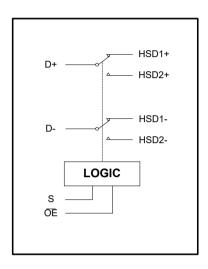
GS7227 is available in Green UTQFN1.8×1.4-10L and MSOP10 packages. It operates over an ambient temperature range of -40°C to +85°C.

Feature

- R_{ON} is Typically 5Ω at 3.0V
- Voltage Operation: 1.8V to 4.3V
- Fast Switching Times:
 t_{ON} 15ns
 t_{OFF} 20ns
- Crosstalk: -30dB at 250MHz
- Off-Isolation: -35dB at 250MHz
- Rail-to-Rail Input and Output Operation
- Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to +85°C
- Available in Green UTQFN1.8×1.4-10L and MSOP10 Packages

APPLICATIONS

- · Route Signals for USB 2.0
- · MP3 and Other Personal Media Players
- · Digital Cameras and Camcorders
- Portable Instrumentation
- Set-Top Box
- PDAs



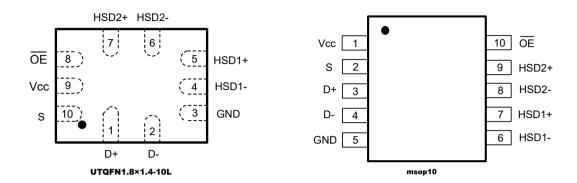
ORDERING INFORMATION

Model	PIN-PACKAGE	Ordering Number	Packing Option	
GS7227	MSOP10	GS7227-MR	3000ea/Reel	
	UTQFN1.8×1.4-10L	GS7227-FR	3000ea/Reel	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Min.	Тур.	Max.	Unit	Note
V _{CC} to GND	0		4.6	V	
Analog, Digital voltage range	-0.3		V _{CC} +0.3	V	
Continuous Current HSDn or Dn	-50		+50	mA	
Peak Current HSDn or Dn	-100		+100	mA	
Operating Temperature Range	-40		+85	°C	
Junction Temperature			+150	°C	
Storage Temperature	-65		+150	°C	
Lead Temperature (soldering, 10s)			+260	°C	
ESD Susceptibility			4000V	V	HBM (UTQFN1.8×1.4-10L)
ESD Susceptibility			400V	V	MM (UTQFN1.8×1.4-10L)


Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Description

Table 1 Pin Description

PIN		NAME	FUNCTION
UTQFN1.8×1.4-10L	MSOP10	NAME	FUNCTION
9	1	V _{CC}	Power Supply
3	5	GND	Ground
10	2	S	Select Input
8	10	ŌE	Output Enable
5	7	HSD1+	Multiplexed Source Inputs
4	6	HSD1-	Multiplexed Source Inputs
7	9	HSD2+	Multiplexed Source Inputs
6	8	HSD2-	Multiplexed Source Inputs
1	3	D+	USB Data Bus
2	4	D-	USB Data Bus

Table 2 Function table

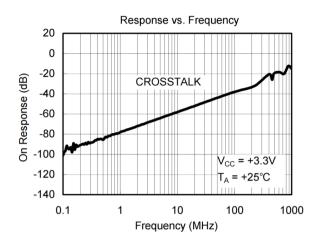
OE	s	HSD1+, HSD1-	HSD2+, HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	×	OFF	OFF

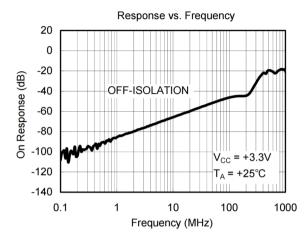
Note: Switches Shown For Logic "0" Input.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.3\text{V}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

B	Oli	Values			11	N	
Parameter	Symbol	Min.	Тур.	Max.	- Unit	Note/Test Condition	
ANALOG SWITCH			•	•	•	,	
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	V _{IS}	0		V _{CC}	V		
On-Resistance	R _{ON}		5	9	Ω	$V_{\rm CC}$ =3.0V, $V_{\rm IS}$ =0V to 0.4V, $I_{\rm D}$ =8mA, Test Circuit 1	
On-Resistance Match Between Channels	Δ R _{ON}		0.3	0.8	Ω	$V_{\rm CC}$ =3.0V, $V_{\rm IS}$ =0V to 0.4V, $I_{\rm D}$ =8mA, Test Circuit 1	
On-Resistance Flatness	R _{FLAT(ON)}		1	2	Ω	$V_{\rm CC}$ =3.0V, $V_{\rm IS}$ =0V to 1.0V, $I_{\rm D}$ =8mA, Test Circuit 1	
Power Off Leakage Current (D+, D-)	I _{OFF}			1	μА	$V_{\rm CC}$ =0V, $V_{\rm D}$ =0V to 3.6V, $V_{\rm S}$, $V\bar{\rm O}$ E=0V or 3.6V	
Increase in $I_{\rm CC}$ per Control Voltage	I _{CCT}			5	μА	V _{CC} =3.6V, V _S ,VOE=2.6V	
Source Off Leakage Current	I _{HSD2(OFF)} I _{HSD1(OFF)}			1	μА	V _{CC} =3.6V, V _{IS} =3.3V/0.3V, V _D =0.3V/3.3V	
Channel On Leakage Current	I _{HSD2(ON)} I _{HSD1(ON)}			1	μА	$V_{\rm CC}$ =3.6V, $V_{\rm IS}$ =3.3V/0.3V, $V_{\rm D}$ =0.3V/3.3V or floating	
DIGITAL INPUTS	*		•	•		•	
Input High Voltage	V _{IH}	1.6			٧		
Input Low Voltage	V _{IL}			0.5	V		
Input Leakage Current	I _{IN}			1	μА	V_{CC} =3.0V, V_{S} , $V\bar{\text{O}}$ E=0V or V_{CC}	
DYNAMIC CHARACTERISTICS	•		•				
Turn-On Time	t _{oN}			15	ns	$V_{\rm IS}$ =0.8V, $R_{\rm L}$ =50 Ω ,	
Turn-Off Time	t _{OFF}			20	ns	C _L =10pF, Test Circuit 2	
Break-Before-Make Time Delay	t _D			3.5	ns	$V_{\rm IS}$ =0.8V, $R_{\rm L}$ =50 Ω , $C_{\rm L}$ =10pF, Test Circuit 3	
Propagation Delay	t_{PD}			0.5	ns	R_L =50 Ω , C_L =10pF	
Off Isolation	O _{ISO}			-35	dB	Signal = 0dBm, R_L = 50 Ω , f =250MHz, Test Circuit 4	


Parameter	Symbol	Values			11	Note (Total Open differen	
Parameter	Symbol Min. Typ. Max.		Unit	Note/Test Condition			
Channel-to-Channel Crosstalk	X _{TALK}			-30	dB	Signal = 0dBm, R_L = 50 Ω , f =250MHz, Test Circuit 5	
–3dB Bandwidth	BW			550	MHz	Signal = 0dBm, R_L = 50 Ω , C_L =5pF, Test Circuit 6	
Channel-to-Channel Skew	t _{SKEW}			130	ps	R_L = 50 Ω , C_L =10pF	
Charge Injection Select Input to Common I/O	Q			10	pC	$V_{\rm G}$ =GND, $C_{\rm L}$ =1.0nF, $R_{\rm G}$ =0 Ω , Q= $C_{\rm Lx}V_{\rm OUT}$, Test Circuit 7	
HSD+, HSD-, D+, D- ON				6.5		f=1MHz	
Capacitance	C _{ON}			7	pF	f=250MHz	
POWER REQUIREMENTS							
Power Supply Range	V _{CC}	1.8		4.3	٧		
Power Supply Current	I _{cc}			1	μA	VCC = 3.0V, $V_{\rm S}$, $V\bar{\rm O}$ E=0V or $V_{\rm CC}$	



TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

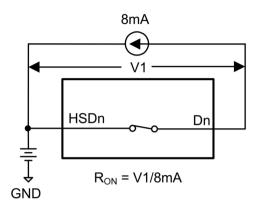


Figure 1 Off Isolation

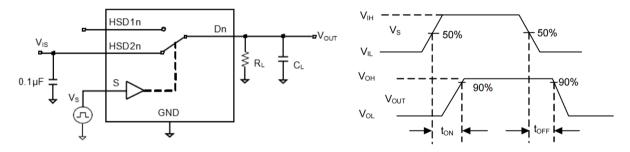


Figure 2 Switching Times (t_{ON}, t_{OFF})

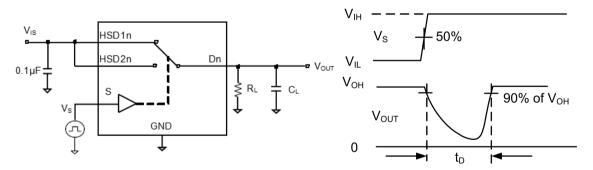


Figure 3 Break-Before-Make Time(t_D)

TEST CIRCUITS(Cont.)

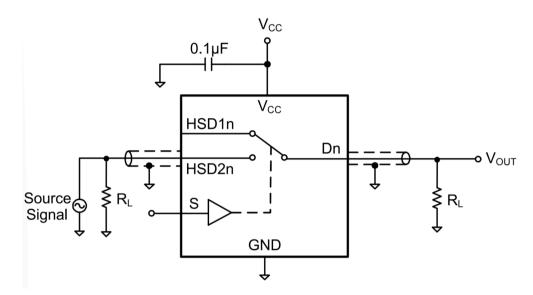
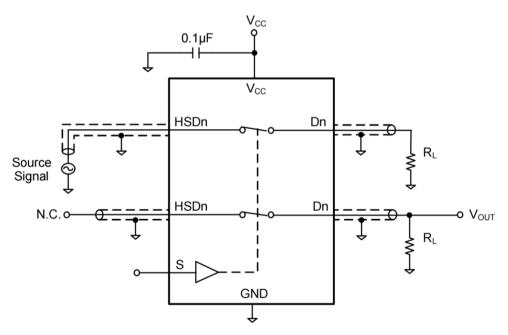



Figure 4 ff Isolation

Channel To Channel Crosstalk = -20 \times log $\frac{V_{HSDn}}{V_{OUT}}$

Figure 5 Channel-to-Channel Crosstalk

TEST CIRCUITS(Cont.)

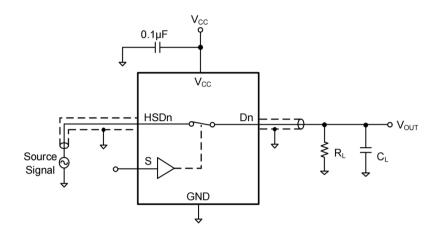
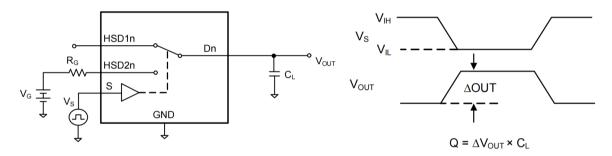
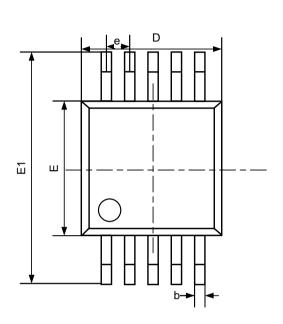
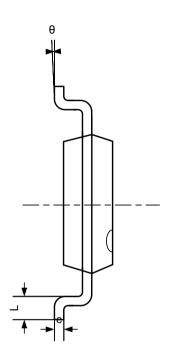
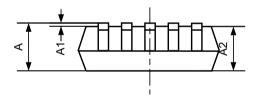


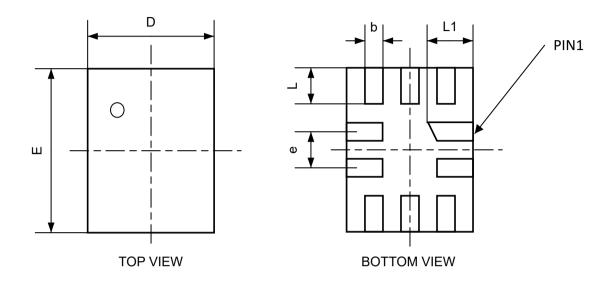
Figure 6 -3dB Bandwidth

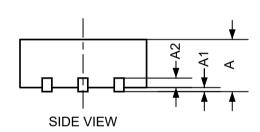




Figure 7 Charge Injection (Q)



Package Outline(MSOP10)




Symbol	Dimensions i	in Millimeters	Dimensions in Inches		
	Min	Max	Min	Max	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.500	BSC	0.020	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

10/11

Package Outline(UTQFN1.8×1.4-10L)

Cumbal	Dimensions	in Millimeters	Dimensions in Inches		
Symbol	Min	Max	Min	Max	
Α	0.500	0.600	0.020	0.024	
A 1	0.000	0.050	0.000	0.002	
A2	0.152	0.152	0.006	0.006	
b	0.150	0.250	0.006	0.010	
D	1.350	1.450	0.053	0.057	
E	1.750	1.850	0.069	0.073	
е	0.400) TYP	0.016	S TYP	
L	0.350	0.450	0.014	0.018	
L2	0.450	0.550	0.015	0.002	