

GS1G125

FEATURES

- Operating Voltage Range:1.65V to 5.5V
- Low Power Consumption:1µA (Max)
- Operating Temperature Range: -40°C to +125°C
- Inputs Accept Voltage to 5.5V
- Output Drive: ±24mA at V_{CC}=3.0V
- Micro Size Packages: SOT23-5, SC70-5
- Positive-negative input clamp diode

APPLICATIONS

- AV Receiver
- Cable Modem Termination Systems
- Digital Picture Frame (DPF)
- High-Speed Data Acquisition and Generation
- Motor Controls: High-Voltage
- Personal Navigation Device (GPS)
- Portable Media Player
- Video Communication Systems

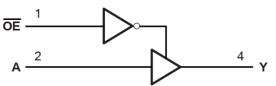
Single Bus Buffer Gate With 3-State Output

DESCRIPTION

The single buffer is designed for 1.65V to 5.5V V_{CC} operation. The GS1G125 device is single line driver with 3-state output. The output is disabled when the output-enable (\overline{OE}) input is high.

This device is fully specified for partial-power-down applications using $I_{\rm off}$. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

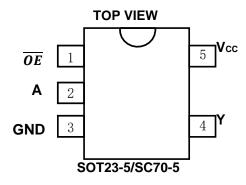

The GS1G125 is available in Green SOT23-5 and SC70-5 packages. It operates over an ambient temperature range of -40° C to $+125^{\circ}$ C.

FUNCTION TABLE

INP	OUTPUT	
(\overline{OE})	А	Y
L	Н	Н
L	L	L
Н	Х	Z

H=HIGH Logic Level L =LOW Logic Level X=Don't Care Z=High-impedance OFF-state

Simplified Schematic


PACKAGE/ORDERING INFORMATION

PRODUCT	ORDER NUMBER	PACKAGE PACKAGE OPTION DESCRIPITION		MARKING INFORMATION
CE1C125	GS1G125-TR	SOT23-5	Tape and Reel,3000	1G125
G\$1G125	GS1G125-CR	SC70-5	Tape and Reel,3000	1G125

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN SOT23-5/SC70-5	NAME	I/O TYPE	FUNCTION
1	\overline{OE}	Ι	<i>OE</i> Enable/Input
2	А	Ι	Input
3	GND	-	Ground
4	Y	0	Output
5	V _{CC}	-	Power pin

Specifications

Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	V _{CC} +0.5	V
Vo	Voltage range applied to any output in the high-impedan state ⁽²⁾	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾			V _{CC} +0.5	V
I _{IK}	Input clamp current	V _I <0		-50	mA
I _{OK}	Output clamp current	V ₀ <0		-50	mA
Io	Continuous output current	·		±50	mA
	Continuous current through V_{CC} or GND		±100	mA	
TJ	Junction temperature	-65	150	°C	
Tstg	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the Recommended Operating Conditions table.

ESD Ratings:

PARAMETER	SYMBOL		MAX	UNIT
_	I _{ESD}	Latch up current	350	mA
Electrostatic discharge	N/	Human-body model (HBM)	±5500	V
usenarye	VESD	Charge device model (CDM)	±2000	V

Thermal Information:

	THERMAL METRIC	GS1G	GS1G125		
		SOT23-5	SC70-5		
Roja	Junction-to-ambient thermal resistance	223.8	214.7	°C/W	
R _{OJC(top)}	Junction-to-case(top) thermal resistance	134.8	126.1	°C/W	
Rojb	Junction-to-board thermal resistance	82.9	59.0	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	11.8	31.4	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	84.9	56.4	°C/W	
$R_{\Theta JC(bot)}$	Junction-to-case(bottom) thermal resistance	N/A	N/A	°C/W	

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at $T_A = +25$ °C, unless otherwise noted.) ⁽¹⁾

Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS	
Complex and the set	N	Operating	1.65	5.5	v	
Supply voltage	Vcc	Data retention only	1.5	5.5	v	
		V _{CC} =1.65V to 1.95V	0.5xV _{CC}			
TT 1 1 1 4 1		V _{CC} =2.3V to 2.7V	1.1		v	
High-level input voltage	VIH	V _{CC} =3V to 3.6V	1.3		v	
		V _{CC} =4.5V to 5.5V	$0.4 \mathrm{x} \mathrm{V}_{\mathrm{CC}}$			
		V _{CC} =1.65V to 1.95V		0.3xVcc		
I and local immediately a	VIL	Vcc=2.3V to 2.7V		0.55	v	
Low-level input voltage		V _{CC} =3V to 3.6V		0.75	v	
		V _{CC} =4.5V to 5.5V		0.2xV _{CC}		
Input voltage	VI		0	5.5	V	
Output voltage	Vo		0	Vcc	V	
		$V_{CC}{=}1.8V{\pm}0.15V, 2.5V{\pm}0.2V$		20		
Input transition rise or fall	t _r , t _f	$V_{CC}=3.3V\pm0.3V$		10	ns/V	
		$V_{CC}=5V\pm0.5V$		5		
Operating temperature	TA		-40	+125	°C	

DC Characteristics

PARAMETER TEST CONDITIONS		Vcc	TEMP	MIN	TYP	MAX	UNITS	
		$I_{OH} = -100 \mu A$	1.65V to 5.5V		Vcc-0.1			
		$I_{OH} = -4mA \qquad 1.65V$			1.2			
	V _{OH}	$I_{OH} = -8mA$	2.3V	Full	1.7			V
	V OH	$I_{OH} = -16mA$	- 3V	Full	2.2			v
		$I_{OH} = -24mA$	31		2.1			
		$I_{OH} = -32mA$	4.5V		3.3			
		$I_{OL} = 100 \mu A$	1.65V to 5.5V				0.1	
		$I_{OL} = 4mA$	1.65V				0.15	
		$I_{OL} = 8mA$	2.3V Full				0.25	V
	V _{OL}	$I_{OL} = 16 m A$	3V				0.4	v
		$I_{OL} = 24mA$	31				0.55	
		$I_{OL} = 32mA$	4.5V				0.55	
T					±0.1	±1	± 1	
Iı	A or B inputs	V _I =5.5V or GND	5.5V			±5	±5	μA
	Ţ			+25 C		±0.1	±1	
	Ioff	V ₀ =5.5V	0	Full			±10	μA
	T		1 (51) (5 51)	+25 C		0.1	1	
	I _{CC}	V _I =V _{CC} or GND, I _O =0	1.65V to 5.5V	Full			10	μA
$\Delta I_{CC} \qquad \qquad One input at V_{CC}-0.6V, Other inputs at V_{CC} or GND$		3V to 5.5V	Full			500	μΑ	

GAINSIL

www.gainsil.com

Switching Characteristics, CL=15pF

over recommended operating free-air temperature range (-40°C to 125°C, unless otherwise noted.) ⁽¹⁾

PARAMETER	FROM	то	Vcc=1.8V±0.15V	Vcc=2.5V±0.2V	Vcc=3.3V±0.3V	Vcc=5V±0.5V	UNIT
FAKANILILK	(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	ТҮР	UNII
t _{pd}	А	Y	6.3	4.3	3.5	2.6	ns

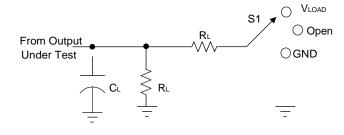
Switching Characteristics, C_L=30pF or 50pF

over recommended operating free-air temperature range (-40°C to 125°C, unless otherwise noted.) $^{(1)}$

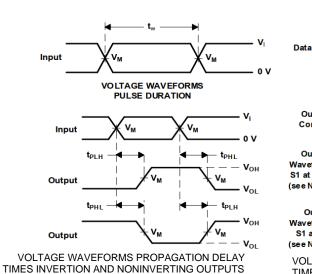
PARAMETER	FROM TO		Vcc=1.8V±0.15V	Vcc=2.5V±0.2V	Vcc=3.3V±0.3V	V _{CC} =5V±0.5V	UNIT
PAKANILIER	(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	ТҮР	UNII
t _{pd}	A	Y	10	7.7	6.8	6	ns
ten	\overline{OE}	Y	9.8	7.4	6.6	5.8	ns
t _{dis}	\overline{OE}	Y	5.9	4.5	3.6	3	ns

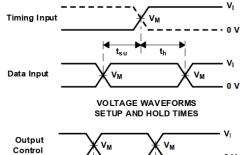
Operating Characteristics

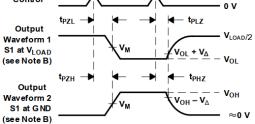
 $T_A=25^{\circ}C$


	PARAMETER		TEST	Vcc=1.8V	Vcc=2.5V	Vcc=3.3V	Vcc=5V	LINIT
			CONDITION S	ТҮР	ТҮР	ТҮР	ТҮР	UNIT
C .	Power dissipation	Output enabled	6 10MH	18	18	19	21	г
C _{pd} capacitance		Output disabled	f=10MHz	2	2	2	4	pF

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.




Parameter Measurement Information



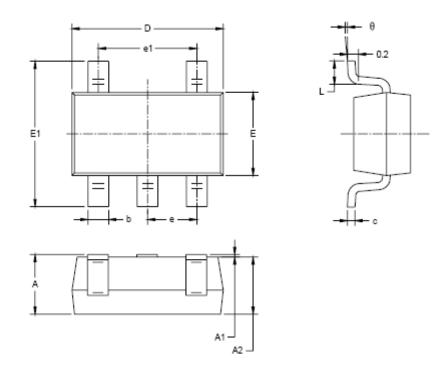
TEST	S1
tplh/tphl	Open
tplz/tpzl	V _{LOAD}
tphz/tpzh	GND

Vcc	INPUTS		Ve		_	D.		N.
VCC	Vi	t _r /t _f	Vм	V LOAD	C∟	R∟		V۵
1.8V±0.15V	V _{CC}	≤2ns	$V_{CC}/2$	$2 \ge V_{CC}$	15pF	1MΩ	1kΩ	0.15V
2.5V±0.2V	V _{CC}	≤2ns	$V_{CC}/2$	$2 \ge V_{CC}$	15pF	1MΩ	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	15pF	1MΩ	500Ω	0.3V
5V±0.5V	V _{CC}	≤2.5ns	$V_{CC}/2$	$2 \ge V_{CC}$	15pF	1MΩ	500Ω	0.3V

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW-AND HIGH-LEVEL ENABLING

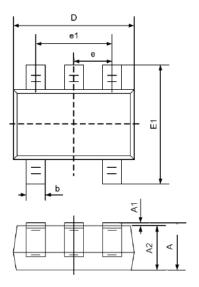
Figure 1. Load Circuit and Voltage Waveforms

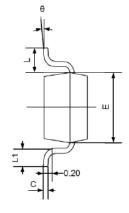
Notes: A. C_L includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ${\leqslant}10$ MHz, Z_{0} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same ast_{dis} .
- F. t_{PZL} and t_{PZH} are the same ast_{en} .
- G. $t_{\mbox{\tiny PLH}} \, and \, t_{\mbox{\tiny PHL}} \, are the same as t_{\mbox{\tiny pd}}.$
- H. All parameters and waveforms are not applicable to all devices.

PACKAGE OUTLINE DIMENSIONS

SOT23-5




Symbol	Dimer In Milli	insions imeters	Dimensions In Inches		
-,	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037 BSC		
e1	1.900	BSC	0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SC70-5

	Dimens	sions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Мах	Min	Мах	
А	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650TYP		0.026TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

