GAINSIL 耳又 Low-Voltage, 2.8 SPDT Analog Switch

General Description

The GS4157/4157B is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a lowdelay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the GS4157/4157B has a maximum ON resistance of 5.1-ohms at 1.65V, 3.9-ohms at 2.3V & 2.85-ohms at 4.5V. Break-beforemake switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

GS4157/4157B is an improved direct replacement for the FSA4157/NC7SB4157

Applications

Bı 1

GND 2

> \mathbf{B}_0 3

S

2

3

VCC

A

Cell Phones PDAs Portable Instrumentation **Battery Powered Communications Computer Peripherals**

Connection Diagram(Top View)

SC70-6

TDFN-6

6 s

5

4

6

5

4

Vcc

Δ

B1

GND

B0

Features

- ♦CMOS Technology for Bus and Analog Applications
- Low ON Resistance: 3-ohms @ 2.7V
- ♦ Wide VCC Range: 1.65V to 5.5V
- ♦ Rail-to-Rail Signal Range
- ◆ Control Input Overvoltage Tolerance: 5.5V min.
- ♦ High Off Isolation: 57dB at 10MHz
- ♦ 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- High Bandwidth: 300 MHz
- Extended Industrial Temperature Range: –40°C to 85°C
- Improved Direct Replacement for NC7SB4157
- Packaging (Pb-free & Green available):

Pin Description

Name	Description
S	Logic Control
Vcc	Positive Power Supply
А	Common Output/Data Port
В0	Data Port (Normally Closed)
GND	Ground
B1	Data Port

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

Ordering Code	Package Description	Temp Range	Top Marking
GS4157-CR 6-pin SC70		–40 ℃ to +85 ℃	ABG
GS4157-FR	6-pin TDFN 1.45X1	–40 ℃ to +85 ℃	ABG

Low-Voltage, 2.8 Ω SPDT Analog Switch

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage V _{CC}	–0.5V to +7V
DC Switch Voltage (VS) (2)	-0.5V to V _{CC} +0.5V
DC Input Voltage (VIN) (2)	0.5V to +7.0V
DC VCC or Ground Current (ICC/IGND).	±100mA
DC Output Current (VOUT)	128mA
Storage Temperature Range (TSTG)	–65°C to +150°C
Junction Temperature under Bias (TJ)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (PD) @ +85°C	180mW

RECOMMENDED OPERATING CONDITIONS⁽³⁾

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to VCC
Switch Input Voltage (V _{IN})	0V to VCC
Output Voltage (VOUT)	0V to VCC
Operating Temperature (T _A)	40°C to +85°C
Thermal Resistance (θJA)	350°C/W

Note 1:Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3:Control input must be held HIGH or LOW; it must not float.

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Unit s
VIAR	Analog Input Signal Range		V _{CC}	T _A = 25°C & –40°C to 85°C	0		V _{CC}	V
R _{ON}	ON Resistance ⁽⁴⁾	I _{out} = 100mA, Bo or B1=1.5V	2.7V	T _A = 25°C		3	4.5	Ω
R _{ON}	ON Resistance ⁽⁴⁾	I _{out} = 100mA, B0 or B1=3.5V	4.5V	T _A = 25°C			3	
ΔR _{ON}	ON Resistance Match Between Channels ^(4,5,6)	l _{out} = 100mA, B0=B1=1.5V	2.7V	T _A = 25°C			0.75	Ω
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 1.5V	2.7V	T _A = 25°C			1.5	Ω
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 3.0V,	4.5V	T _A = 25°C	= 25°C		0.5	Ω
ViH	Input High Voltage	Logic High Level	V _{CC} = 1.65V to 1.95V V _{CC} = 2.3V to	$T_A = 25^{\circ}C \& -40^{\circ}C \text{ to } 85^{\circ}C$	1.5			· V
			5.5V					
Mu	Input Low		1.65V to 1.95V				0.5	V
VIL	Voltage		V _{CC} = 2.3V to 5.5V				0.8	v

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Low-Voltage, 2.8 Ω SPDT Analog Switch

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

I _{IN}	Input		$V_{CC} = 0V$	T _A = 25°C		±0.1	
	Current	0 <u>2 v n</u> 25.5 v	to 5.5V	T _A = −40°C to 85°C		±1.0	
IOFF	OFF State Leakage Current	A=1V,4.5V, B0 or B1=4.5V, 1V	V _{CC} = 5.5V	T _A = 25°C	-2.0	2.0	μA
laa	Quiescent	All channels ON or OFF, V _{IN} = V _{CC} or	V _{CC} =	T _A = 25°C		1	
ICC	Supply Current	GND, I _{OUT} = 0	5.5V	T _A = −40°C to 85°C		10	

Note 4: Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B)

Note 5: Parameter is characterized but not tested in production.

Note 6: DR_{ON} = R_{ON} max – R_{ON} min. measured at identical V_{CC}, temperature and voltage levels.

Note 7: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions.. Note 8: Guaranteed by design.

CAPACITANCE⁽¹²⁾

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
CIN	Control Input					2.3		
Сю-в	For B Port,Switch OFF	f_ 1 M⊔≂(12)	V _{CC} = 5.0V	T _A = 25°C		6.5		pF
C _{IOA-ON}	For A Port, Switch ON					18.5		

SWITCH AND AC CHARACTERISTICS

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
	Soo tost sircuit	V _{CC} = 2.3V to 2.7V			1.2			
tplh tphl	Delay: A to	diagrams 1 and 2. V_1	V _{CC} = 3.0V to 3.6V	T _A = 25°C & -40 to 85°C		0.8		
	ы	Open (10)	V _{CC} = 4.5V to 5.5V			0.3		
	Output t _{PZL} Enable Turn t _{PZH} ON Time: A to Bn	diagrams 1 & 2. See test circuit $V_I = 2V_{CC}$ for T _{PZL} , $V_I = 0V$ for t _{PZH}	V _{CC} = 1.65V to 1.95V	T _A = 25°C	7		23	
t _{PZL} Enat t _{PZH} ON ⁻ A to			V_{CC} = 2.3V to 2.7V		3.5		13	
			V _{CC} = 3.0V to 3.6V		2.5		6.9	ns
			V _{CC} = 4.5V to 5.5V		1.7		5.2	
		See test circuit diagrams 1 and 2. $V_I = 2V_{CC}$ for T _{PZL} , $V_I = 0V$ for t _{PZH}	V _{CC} = 2.5V	T _A = 25°C & -40 to 85°C			24	
tpzl tpzн	ENABLE		Vcc = 3.3V				14	
	NOTIME:		$V_{CC} = 3.0 V \text{ to } 3.6 V$				7.6	
			$V_{CC} = 4.5 V$ to 5.5V				5.7	

Low-Voltage, 2.8 SPDT Analog Switch

	Output	t	V _{CC} = 1.65V to 1.95V		3		12.5	
tPLZ	Disable	See test circuit diagrams 1 and 2.	$V_{CC} = 2.3V$ to 2.7V	T _A = 25°C	2		7	
tPHZ	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V		1.5		5	
			$V_{CC} = 4.5V$ to 5.5V		0.8		3.5	
	Output		V _{CC} = 2.5V				13	
tPLZ	Disable	See test circuit diagrams 1 and 2.	$V_{CC} = 3.3V$	$T_A = -40$ to			7.5	
tPHZ	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C			5.3	
	A to Bh		$V_{CC} = 4.5V$ to 5.5V				3.8	
			V _{CC} = 2.5V		0.5			
	Break	See test circuit diagram 9. ⁽⁹⁾	V _{CC} = 3.3V	T _A = 25°C & -40 to 85°C	0.5			
ιBW	Make Time		V _{CC} = 3.0V to 3.6V		0.5			
	- Charge	CL = 0.1nF, VGEN =	VCC = 4.5V to 5.5V		0.5			
			V _{CC} = 5.0V	T. 05%0		7		
Q	Injection	$0V, R_{GEN} = 0\Omega.$ See test circuit 4.	VCC = 3.3V	$1_{A} = 25^{\circ}C$		3		рС
OIRR	Off Isolation	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ V_{GEN} = 0V, \\ R_{GEN} &= 0\Omega. \ See \ test \\ circuit \ 5. \ ^{(11)} \end{split}$	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	$V_{CC} = 1.65V \text{ to } 5.5V$	T _A = 25°C		-54		
f3dB	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 6: Guaranteed by design

Note 7: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, whne driven by an ideal voltage source with zero output impedance.

Note 8: Off Isolation = 20 Log10 [V_A / V_{Bn}] and is measured in dB.

Note 9: TA = 25°C, f = 1MHz. Capacitance is characterized but not tested in production.

TEST CIRCUITS AND TIMING DIAGRAMS

Figure 2. AC Waveforms

Figure 3. Break Before Make Interval Timing

影词 Low-Voltage, 2.8Ω SPDT Analog Switch

Figure 4. Charge Injection Test

Figure 5. Off Isolation

Figure 7. Channel Off Capacitance

Figure 6. Crosstalk

Figure 9. Bandwidth

6

Packaging Mechanical: 6-Pin SC70 (C)

Packaging Mechanical: 6-Pin TDFN

